[Nonlinear Physics Centre]
  Nat. Mater. 11, 30-33 (Jan 2012)
Home page
+People
+Research
+Study
-Papers
+Facilities
Contact us
Recent papers
Sci. Reports 5, 9574-5 (10 apr 2015)
JETP Lett. 100, 831-836 (22 Oct 2014)
Phys. Rev. B 90, (Oct 2014)
Rev. Mod. Phys. 86, 1093-1123 (12 Sep 2014)
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, 20140010--20140010 (Sep 2014)
more...
CUDOS
Student scholarships available
Do your Honours or PhD with the Centre for Ultrahigh- bandwidth Devices for Optical Systems
Magnetoelastic metamaterials
M. Lapine, I. V. Shadrivov, D. A. Powell, and Yu. S. Kivshar,
Nat. Mater. 11, 30-33 (2012).
[Full-text PDF (390 Kb)] [Online]
Electromagnetic wave compresses metamaterial leading to a new type of nonlinear response.
Abstract: The study of advanced artificial electromagnetic materials, known as metamaterials, provides a link from material science to theoretical and applied electrodynamics, as well as to electrical engineering. Being initially intended mainly to achieve negative refraction(1,2), the concept of metamaterials quickly covered a much broader range of applications, from microwaves to optics and even acoustics(3,4). In particular, nonlinear metamaterials established a new research direction(5-12) giving rise to fruitful ideas for tunable and active artificial materials(13-15). Here we introduce the concept of magnetoelastic metamaterials, where a new type of nonlinear response emerges from mutual interaction. This is achieved by providing a mechanical degree of freedom so that the electromagnetic interaction in the metamaterial lattice is coupled to elastic interaction. This enables the electromagnetically induced forces to change the metamaterial structure, dynamically tuning its effective properties. This concept leads to a new generation of metamaterials, and can be compared to such fundamental concepts of modern physics as optomechanics(16) of photonic structures or magnetoelasticity in magnetic materials.
Keywords: forces

Copyright © by the respective publisher. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the publisher.

  Copyright © 2001-2010 Nonlinear Physics Centre All rights reserved.