Comment on “Nonexistence of Small-Amplitude Breather Solutions in ϕ^4 Theory”

In a recent Letter,\(^1\) a proof of nonexistence of small-amplitude breather solutions to the nonlinear equation

$$u_{tt} - u_{xx} + u - \frac{1}{6} u^3 = 0$$

was given. This equation has a formal breatherlike (localized oscillating) solution in the form of an asymptotic power series in $S = \epsilon \text{sech}(\epsilon x)$, where $\epsilon = (2 - \omega^2)^{1/2} \ll 1$, ω being the breather’s internal frequency; however, the series does not converge to a genuine solution, and, in fact, the “breather” very slowly fades because of emission of radiation. A corresponding energy emission rate has been demonstrated to be exponentially small in ϵ. Similar results were obtained earlier by Eleonsky et al.\(^2\)

The method of Ref. 1, based on matched asymptotic expansions, is fairly general and may be applied to other equations with a polynomial nonlinearity. In this Comment we aim to draw attention to an equation which has important physical applications,

$$u_{tt} - u_{xx} + u - \frac{1}{6} u^3 = 0.$$ \hspace{1cm} (2)

In the lowest approximation, breatherlike solutions to (2) are

$$u \approx 4 \epsilon \sin[(1 - \epsilon^2/2)t] \text{sech}(\epsilon x).$$ \hspace{1cm} (3)

Equation (2) does not have exact breather solutions either, and the rate of energy emission from the approximate breather (3) can be found by the method of Segur and Kruskal\(^1\) (see also Ref. 2). However, it is interesting to note that the result can be obtained in another way with the aid of the perturbation theory for the sine-Gordon equation. Indeed, Eq. (2) may be rewritten in the form

$$u_{tt} - u_{xx} + u = \left(1/5\right)u^5 - \left(1/7!\right)u^7 + \cdots.$$ \hspace{1cm} (4)

The rate of energy emission from the sine-Gordon small-amplitude breather (3) under the action of the perturbation au^3 ($a \ll 1$) has been calculated by one of us in a recent paper:\(^3\)

$$W = C(\sqrt{2}/5)(64\pi/3)^2 \exp(-2\sqrt{2}\pi/\epsilon),$$ \hspace{1cm} (5)

with the radiation frequency $\omega \approx 3$; C is given by an infinite sum $1 + C_1 + C_2 + \cdots$, where the constants C_j, though produced by higher terms of expansion in powers of ϵ, are formally all of order 1.\(^1\) C can be found exactly by means of the approach developed in Ref. 1. In any case, since W is exponentially small, the approximate breather (3) is, in fact, very stable, and it may be quantized semiclassically. The quantization problem has also been solved in Ref. 3: The quantized values ϵ_n of the amplitude are

$$\epsilon_n = \gamma n/16 - \frac{1}{3} (\gamma n/16)^3 + O((\gamma n/16)^5),$$

where γ is a small coupling constant, and n is a quantum number, $1 \ll n \ll 16/\gamma$. From the semiclassical viewpoint, the emission rate (5) gives the rate Γ of the radiative transition $n \rightarrow n - 3$ between the quantized levels: $\Gamma \approx W/3 \gamma$. The small-amplitude breather described by Eq. (1) may be quantized in a similar way. The result is

$$\epsilon_n = 3\gamma/2 - 25(25\gamma)^3/8 + O((\gamma n)^5),$$

In all cases the exponentially small factor in W is $\exp(-\pi k/\epsilon)$, k being the radiation wave number. k/ϵ is proportional to the ratio of the breather’s size $\sim \epsilon^{-1}$ to the radiation wavelength $\lambda = 2\pi/k$. If a perturbation contains its own length scale L, the mentioned ratio changes into L/λ. In particular, if $L \leq 1$, the energy emission rate is not exponentially small, i.e., a breather is not very long lived. An example of a perturbation of this kind is $a\delta(x)\sin\phi$, for which $L = 0$. We have recently found the corresponding

$$W = 625(3\sqrt{2}/16) a^2 (\epsilon^2 - a^2/4)^3,$$

which is valid for both $a \ll \epsilon$ and $a \approx \epsilon$ (in the latter case the breather’s amplitude is, in fact, not ϵ but $\epsilon'(= \epsilon - a/2)$. Under the action of this perturbation, the amplitude decays at $t \rightarrow \infty$ according to the law $\epsilon'(t) \sim (a^2 t)^{-1/2}$, while in the case of (1) and (2) the decay is much slower, $\propto (\log t)^{-1}.1$

We are indebted to N. E. Kulagin for useful discussions.

Yuri S. Kivshar
Institute for Low Temperature Physics and Engineering
Kharkov 310164, U.S.S.R.

Boris A. Malomed
P.P. Shirshov Institute for Oceanology
Moscow 117218, U.S.S.R.

Received 26 May 1987
PACS numbers: 03.50.-z, 02.30.+g, 42.65.Bp, 63.10.+a